Foxhunting

The Art and Science of Radio Direction Finding

Background

Theory

- All radio sources are ripples in a pool of electromagnetism
- Antennas and techniques can be used to locate source just like your ears locate sound

Uses

Military Locating jammers and enemy structures Drug Cartels Civil ELT/EPIRB Locating FCC/Amateur Radio Locating harmful interference Finding stuck transmitters Foxhunting

Radio Orienteering

(Aka Radiosport)

- International sport of using ARDFing and Orienteering techniques to quickly locate multiple transmitters
- Distances vary, avg 6-10km
 - Fox Oring
 - 100m range transmitter
 - Searched over wide area
 - Radio Orienteering in a Compact Area (ROCA)
 - Park sized reception and search area
 - Focus on RDF rather than navigation

ARDF Map

ARDFing Receivers

Dual-band Handhelds are most versatile

- Usually have a signal meter
 - Without makes it more difficult; use only noise
- Ability to tune to harmonics of 2m band
- Integrated attenuator is a plus
- Dedicated Doppler Units
 - Extremely fast and precise locating
 - Easy identification of multipath
 - Expensive

ARDFing Antennas

Must be Directional

- Single Antenna
 - Body Fade
 - Using the body to null one side
 - Inaccurate
- Multiple Antennas
 - 🌯 Yagi
 - Doppler
 - Adcock
 - Loop

Antennas Cont.

- The WB2HOL Tape-Measure Yagi
 - Easy to build (and cheap too)
 - Rugged
 - Uses cardioid pattern null rather than peak to determine bearing
 - Requires attenuation at close range

Antennas, Cont.

Loops

- Typically used on 80m
- Bidirectional without modification (sense antenna)

Adcock Array

- Two Antenna Phased Array
 - Uses phase null to determine direction
 - Bidirectional like loops
 - Similar to how hearing works

Antennas, Cont.

Doppler Array

- Requires at least 4, 1/4λ equidistant/equiplanar antennas
 - And a combining network
 - And a phase detector
 - And equal lengths transmission line
 - And time and money
- Correlative Interferometry
 - Think VLA

Locating Techniques

Point and Run

- Point to peak signal and go that way
- Quickest
- Prone to errors caused by multipath
- Sensible on flat terrain or in close proximity

Triangulation

- Record headings from 2+ points surrounding source
- Multipath is easily noticeable

Triangulation

Multipath

- Noted by odd bearings and wavering signal strengths
- Caused by reflections

Getting Closer

- Multipath Effects are lessened but transmitter becomes overpowering
 - Fading techniques and directional antennas suffer
 - Doppler/Adcock Arrays prevail
- Attenuation
 - Active vs. Passive Attenuation
 - Harmonics

Attenuation

Resistive Attenuation

- Weakens SNR
- Prone to signal leakage

Offset Attenuator (pictured)

- Changes frequency in small amounts
- Offers up to 100 dB attenuation

Harmonics

- For 2m transmitters, tune to 3rd harmonic
- 40-80 dB

Other Caveats

Desense

- When strong, nearby transmitters overdrive receiver's front end
- Intermodulation
 - When multiple nearby transmitters
 - Common in RF dense areas

Books & Links

- Transmitter Hunting: Radio Direction Finding Simplified
 - Joe Moell and Thomas Curlee
- http://homingin.com/
- IARU Region II ARDF Site
 - <u>http://www.ardf-r2.org/</u>
- Tape Measure Beam Plans
 - http://theleggios.net/wb2hol/projects/rdf/tape_bm.htm
- Offset Attenuator Plans
 - <u>http://www.homingin.com/joek0ov/offatten.html</u>
- This Presentation
 - http://goo.gl/Qa34T